模擬測驗

1.

Every n × n matrix has n eigenvalues and n eigenvectors

2.

Similar matrices have the same

(A)

(a) solution set

(B)

(b) general structure

(C)

(c) eigenvalues

(D)

(d) eigenvectors.

3.

If A is row equivalent to the identity matrix I, then A is diagonalizable.

4.

If A is a square matrix with orthonormal columns, then A is invertible

5.

6.

(A)

(a) rank = 2, nullity = 2,

(B)

(b) rank = 3, nullity = 1,

(C)

(c) rank = 2, nullity = 4,

(D)

(d) rank = 1, nullity = 3.

7.

Let A be an m × n matrices, P be an invertible m × m matrix, and Q be an n × n matrix.
Which of the following statements are true?

(A)

(a) rank(AQ) = nullity(A),

(B)

(b) rank(AQ) = rank(A),

(C)

(c) rank(PA) = rank(P)

(D)

(d) rank(PA) = rank(A).

8.

If A is an n × n symmetric matrix, then

(A)

(a) A is always diagonalizable.

(B)

(b) A is orthogonally diagonalizable

(C)

(c) A has nonnegative eigenvalues

(D)

(d) A always has n linearly independent eigenvectors

(E)

購買題庫後,可使用那些功能?

可觀看題目詳解,並提供模擬測驗!(免費會員無法觀看研究所試題解答)